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Fig. 4. Propagation constant y for the odd conductor-backed coplanar strip
mode. Referring to Fig. 1, ¢, = 2.25, wl/sp = w2/sp = 0.66, d/sp =
2.66, h2=0,and h1 /sp = 10.66; (a) gives 8 (and the propagation constant
of the TM, parallel plate mode) and (b) gives «. A comparison is made
between results computed using the method in this paper and with results
computed previously using a mode matching analysis [7].
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Fig. 5. Real part § of the propagation constant for coplanar strip trans-
mission line. Referring to Fig. 1, ¢, = 10.5, wl/sp w2/sp = 0.5, d/sp
= 2.5, and hl /sp = h2/sp = 5. The solid line represents the results of
this work and the points represent the results of [2].

asymptotic procedure is accurate for expansion and testing func-
tions separated by as few as 0.1 A,.
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The Behavior of the Electromagnetic Field at Edges
of Media with Finite Conductivity

Jochen Geisel, Karl-Heinz Muth, and Wolfgang Heinrich

Abstract—The principal behavior of both electric and magnetic fields
at the edges of media with finite conductivity is investigated. We find
that, as in the case of ideal conductors, the normal electric field shows
a singularity at the edge. The magnetic field components, however,
remain bounded if the permeabilities of the neighboring media do not
differ. Detailed results.on typical geometries are given.

[. INTRODUCTION

It is well-known that singular points of the electric and the mag-
netic fields may occur at edges (e.g., [1], [2]). This is important,
for instance, when checking the validity of surface integrals. More-
over, one can incorporate the order of singularity explicitly into
numerical descriptions, which leads to very efficient modeling tools
(e.g.: The basis functions used in the common spectral-domain ap-
proaches).

For the case of perfectly conducting media, detailed results are
reported in the literature (see [1], [2]). Fig. 1 shows the corre-
sponding geometry and the notation used here. A cylindrical co-
ordinate system is used. We consider the equivalent 2-dimensional
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Fig. 1. Edge of a perfectly conducting medium with cylindrical geometry

problem assuming homogeneity in z direction. Then the E and H
field components at the edge p — 0 behave as follows:

(w/do~1)
~p for > 7 (unbounded
Ep’ Etb’ Hm H¢ ¢0 )
< o otherwise (bounded)
E., H, < oo (bounded). 1)

Note that in any case a bounded term in the fields may exist and
thus (1) provides an explicit p dependence at the edge only for a
singular behavior (i.e., for ¢y > w). This explains also the finding
of a “‘constant term’’ in [3].

No general treatment, however, is available for edges of con-
ductive media with k < oo. Such results are of particular impor-
tance when studying planar geometries with rectangular nonideal
conductors as done, for instance, in MMIC transmission-line anal-
ysis. Recently, several approaches were reported in the literature
on that subject taking into account the metallic strips as media of
finite conductivity (e.g., [4]-[8]).

In reality, of course, all fields need to be bounded on physical
reasons. But then, beside the finite conductivity, also no ideally
sharp edges exist. One, therefore, cannot conclude from that sim-
ple consideration whether the ‘‘intermediate’’ case of an ideally
sharp edge of finite conductivity produces singularities or not. A
more detailed treatment is necessary which is presented in this pa-
per.

II. METHOD OF ANALYSIS

Our analysis is based on Meixner’s paper [1]. His mathematical
considerations are extended here in order to cover also the case of
finite conductivity values. The configuration under investigation is
shown in Fig. 2. A structure homogeneous along ¢ is assumed con-
sisting of two neighbored isotropic media of zero and finite con-
ductivity, respectively.

According to the cylindrical geometry the singular field behavior
for p = O can be described by that of the Bessel function divided
by p. As can be seen from the Bessel-function series expansion,
one has a field singularity of the form

I [1 (K, )} 1 1 <Kp>y L@
im |- - = | ) .
o—olo 7 P p Tw+ D 2 P

J, denotes the Bessel function of order », I' the Gamma function,
and K the separation constant. Note that in the lossy case » assumes
complex values.

Extracting the factor p the remainder is bounded and can be
expanded in a Taylor series with respect to p. Thus each field com-
ponent can be expressed in the following form:

v—1

o fagta cotapt . a=f6.2 O

Fig. 2. The problem under investigation: edge of a conducting medium
with 0 < k, < oo (otherwise identical to Fig. 1).

with the Taylor coefficients a, being functions of both ¢ and z as
indicated. Generally, all six field components are represented by a
series according to (3) but with different sets of coefficients a,. Ap-
plying Maxwellian equations and fulfilling the continuity condi-
tions at ¢ = 0 and ¢ = ¢, and ¢ = ¢y — 2w, respectively, one
derives a system of differential equations in ¢ for the 4, (see [1]).
Nontrivial solutions can be obtained only for special values of ».
Since our aim is to determine solely the order of singularity, only
those values », are required for the further considerations.

Substituting », back into the field components one finds the order
of singularity for p — 0: E,, E,, H,, H, ~ p"~'. The longitudinal
fields E. and H., on the other hand, remain bounded and their value
cannot be determined solely by the edge geometry.

The range of Real(») is restricted to the interval ]0, 1] on general
reasons: Real(¥) > 0 must hold because otherwise the energy stored
in the neighborhood of the edge would become infinite (*‘edge con-
dition”). On the other hand, if Real(y) > 1, the fields remain
bounded, the leading term p”~ Uin (3) becomes zero at p = 0, and
hence the approach of (3) fails.

After some mathematical operations the differential system of
equations separates into two decoupled algebraic problems for E,,
E,, and H,, H,, respectively. For the geometry of Fig. 2 and the
E-field case, one has the following complex-valued equation for »:

- 4 sin (v ) @
sin (vg[m — dgl)

€L &

E]+€2

with €; = ¢,160 and €, = €69 — jk;/w (see Fig. 2). Note that E,

and E, behave ~p™ .

Correspondingly, one derives for H, and H,:

_ 4 sin (vy ™) )

sin (vy[® — ¢])

[ T ]
wet o

with H,, H, ~ p™~ !. Note that the negative sign appears in front
of the right-hand side of (4), (5) when interchanging the numbering
of the lossy and the lossless region compared to Fig. 2.

In the case ¢; = e,, all the electric fields remain bounded and
there is no explicil dependence on the edge geometry. The same
statement holds for the magnetic fields if y; = p,.

Chow et al. [9] found numerically that for a rectangular strip
conductor the fields for k = o and x < oo, respectively, differ at
the edge itself but are of comparable magnitude at some distance
apart. It would be interesting, therefore, to determine that critical
distance range in which significant deviations occur. Such an anal-
ysis, however, cannot be formulated in a general way as presented
above, because the field behavior at p > 0 depends not only on the
edge geometry itself but also on the surrounding structure. There-
fore, statements can be deduced only for the specific line geometry
under investigation.
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III. DiscUssION
A. Electric Field

Equations (4) and (5) show that the tangential E field compo-
nents become singular only if ¢; # ¢,. Particularly, in the case of
a metallic conductor with &y, >> wey (4) reads

€ — € wWeg

. weg :
=1 + 2je,y - + 2¢.4(en + €2 - < >
Ky K

U

€|+E'_7 2

sin (vgm)
-t 6
sin (vg[m — o) ©

In the microwave range and for realistic metallic conductivity
values the term we, / k, is very small (lower than 10™°). Therefore,
the E-field singularity should approximate the value vz = 7 /¢, for
k = oo (see (1)). Our numerical investigations confirmed this ob-
servation. For that purpose, we employed a perturbation approach
which gives the deviation of v from the x = o value vz, = 7/ 0.
For the structures of interest the difference |vp — vgo,| ranges in
the order below 10™'% and thus one may use the value vy, with
excellent accuracy.

That statement, of course, does not hold if one considers an in-
finitely thin layer (¢y = 2n). Then one finds vy — 1 = —1/2 for
k = oo (field singularity ~ 0~ Y/?), whereas vz — 1 = 0 (bounded
fields) is obtained for x < oo, In the latter case, namely, region (2)
in Fig. 2 has zero thickness and thus does not disturb the fields at
all.

B. Magnetic Field

For u; = u,, in contrast to the electric field, the H components
remain bounded independent of the conductivity value as far as
k, < o holds. As a consequence, the limit k, = oo differs from
the k, = oo value. A noncontinuous transition takes place. Only if
media with different permeabilities are involved H, and Hy become
singular ~ p**~ ! at the edge according to (5).

One further consideration supports the result for u; = pu, and
k, < oo: As well known, in the dc limit f — O the current density
inside a nonideal conductor becomes uniformly distributed and,
consequently, the H field has to remain bounded (see [10]).

C. Three-Region Problem

In the presence of two dielectric and one conductive regions as
depicted by Fig. 3, a similar mathematical procedure as described
in Section II may be applied (see [2]). After some lengthy opera-
tions, again two decoupled conditions for vz and »y can be de-
duced.

Regarding the singularities, the results correspond to those of the
two-region problem treated before, except for one special aspect:
Both in the lossy and the lossless case for certainr parameter con-
stellations (i.e.: ¢; small and ¢, slightly larger than =, depending
also on ¢, /¢,5), all fields remain bounded. Regarding the analysis
of planar transmission lines, however, that observation has no
practical relevance.

IV. CoNCLUSIONS

We will confine our ¢onsiderations to the planar transmission-
line geometries found in microwave circuits and MMIC’s. Owing
to the rectangular conductor cross-sections, for this class of prob-
Iems primarily the 90-degree angle is of importance. Fig. 4 illus-
trates such a geometry. It describes, for example, the case of a
conductor edge located at the top of a dielectric substrate.

For that configuration, the tangential £ field components are sin-

NEFN
\0<’K3<eo 9
O=0y \
€9 @
n2=0
K2

o= 01

Fig. 3. The three-region problem: edge of a conducting medium with
0 < k; < oo neighbored by two dielectric regions.

€9 53////////

0<‘K3< oo

¢=0

Fig. 4. Typical geometry found in microwave transmission-line analysis:
rectangular conductor at the top of a dielectric substrate (g, = pq, the no-
tation refers to Fig. 3).

gular at the edge with approximately the same order as in the cor-
responding geometry with k3 = oo. The tangential H field compo-
nents, on the other hand, become bounded and thus the transition
between k3 — o0 and k3 = oo is not continuous. That means, for
instance: It is not justified to assume the tangential magnetic fields
at the edge to be approximately equal in both cases. Thus one con-
cludes that any perturbational approach based on that approxima-
tion fails if the influence of the fields at the edge is predominant.

More precisely, the results can be summarized as follows (the
notation refers to Fig. 4):

K3y = ©0 K3 < ®
E, E, ~p" = o ~p"-1 > oo
H, H, ~p™/ 5 oo bounded (7
E.,H, bounded bounded
with v = pg and
L3
Vg = fore,; = ¢
£ 5 1 2
. ®
€1 — €2 sin (vpw) .
= - otherwise
€1 1 € sin (VE[”r - ¢0])

Assuming ¢, /¢,, > 2, for instance, one finds 0.5 < »; < 0.6,
which is similar to the case of an infinitely thin strip in an homo-
geneous medium (vg = 0.5).
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Experimental Wide-Stopband Filters Utilizing
Asymmetric Ferrite Junctions

H. How, Y. Liu, S. Zhang, C. Vittoria, C. Carosella,
and V. Folen

Abstract—Filters incorporating asymmetric stripline Y-junction cir-
culators have been fabricated and tested over the frequency range of
0.05 to 18 GHz. The passband frequency was near 2 GHz. The inser-
tion loss was ~2 dB and the stopband extended from 4.5 to 18 GHz
with transmission < —30 dB. The filter includes ferrite discs in which
high order modes have been eliminated as calculated in an earlier pa-
per [2].

INTRODUCTION

Filter designs incorporating ferrite materials have been devel-
oped for the past 25 years. Typically a polished sphere of single
crystal YIG is fed through two orthogonal semi-circular wire loops
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such that the two wires become tightly coupled at the ferrimagnetic
resonant frequency of the YIG sphere [1]. However, this design is
susceptible to magnetostatic mode excitations above and below the
main ferrimagnetic resonance mode. In addition, instabilities of the
spin waves can induce the excitation of other subsidiary resonance
modes. Altogether, excitations ‘of these extraneous modes give rise
to spurious transmissions at frequencies off the fundamental pass-
band frequency. The power handling capacity in a resonant device
is therefore quite low (~ 100 mW). In a previous paper [2] we
investigated the feasibility of constructing a ferrite filter utilizing a
Y-junction circulator design. By careful design of the junction ge-
ometry high order modes of excitations can be effectively sup-
pressed and, hence, the stopband transmission of the device can be
extended many times the fundamental frequency. Since wide stop-
band filters are currently needed for radome applications, we find
here an example of ferrite devices that can be utilized to protect
electronic components in high-power and/or high-noise environ-
ments. For a typical stripline circulator operating below 30 GHz
the CW power handling capability can be as high as several hundred
watts [3], since non-resonant properties of the ferrite are utilized
in the microwave transmission mechanism.

A circulator is defined as a three-port device arranged such that
the energy entering a port is coupled to an adjacent port but not to
the third port. A circulator requires its three ports to be arranged
symmetrically with respect to one another. However, one may re-
lax this 3-fold symmetry to obtain one more degree of freedom in
designing a circulator filter. Strictly speaking, this asymmetric de-
sign cannot be referred to as a circulator design and, thérefore; we
call our device a circulator design only under a restricted basis. In
[2] we have established the circulation conditions for an asymmet-
ric circulator, which determined in turn the radius of the ferrite disc
and the dielectric ratio of the ferrite and the dielectric filling ma-
terial [2].

In this paper we report our experimental work following the de-
sign conditions predicted by the theory [2]. We have fabricated
several asymmetric circulators using three different kinds of ferrite
materials. Experimentally, we find that transmissions due to high
order mode excitations have been effectively suppressed and the
reflection and transmission characteristics compare reasonably well
with our calculations [2]. Using two circulators in cascade we mea-
sure 2.1 dB insertion loss, 33 dB isolation, and the stopband ex-
tending more than two octaves of the transmission frequency.

EXPERIMENTS

Fig. 1 depicts the geometry of an asymmétric circulator where
the three ports are designated as the input, output, and isolated
ports. The angle § denotes half the asymmetric port separation an-
gle (not necessarily equal to 60°), and ¢ is half the suspension
angle of the three ports. As predicted in [2] a circulator filter design
can be realized by assigning the two angles é and ¢ both equal to
45°. Furthermore, the theory also predicts the following values:

w,/wn = 2.1, wi/w, =20, yAH/w, = 0.012,
uw = 6.12,
éd/éf = 0.092.

K = 488, Heff = 2.23,
x = 0.157, z = 4.92,

where p and « are the Polder tensor elements defined by

Wy Wy Wy @
pEld s k= s,
0o T W Wy T W@
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