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Fig, 4. Propagation constant ~forthe oddconductor-backed coplanar strip
mode. Referring to Fig. 1, e, = 2.25, W1/Sp = w2/sp = 0.66, d/Sp =

2.66, h2=0, andhl/sp= 10.66 ;(a) gives B(andthe propagation constant

of the TMO parallel plate mode) and (b) gives a. A comparison is made
between results computed using themethod inthispaper and with results
computed previously using a mode matching analysis [7].
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Fig, 5. Real part (J of the propagation constant for coplanar strip trans-
mission line. Referring to Fig. 1, e, = 10.5, wl/spw2/sp = o.5, d/sp
= 2.5, andhl/sp.= h2/sp = 5. The solid line represents the results of
this work and the points represent the results of [2].

asymptotic procedure is accurate for expansion and testing func-

tionsseparated byasfewas O.l A,,.
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The Behavior of the Electromagnetic Field at Edges

of Media with Finite Conductivity

Jochen Geisel, Karl-Heinz Muth, and Wolfgang Heinrich

Abstract–The principal behavior of both electric and magnetic fields

at the edges of media with finite conductivity is investigated. We find

that, as in the case of ideal conductors, the normal electric field shows

a singularity at the edge. The magnetic field components, however,
remain bounded if the permeabilities of the neighboring media do not

differ. Detailed resultson typical geometries are given.

I. INTRODUCTION

It is well-known that singular points of the electric and the mag-

netic fields may occur at edges (e. g., [1], [2]). This is important,

for instance, when checking the validity of surface integrals. More-

over, one can incorporate the order of singularity explicitly into

numerical descriptions, which leads to very efficient modeling tools

(e.g.: The basis functions used in the common spectral-domain ap-

proaches).

For the case of perfectly conducting media, detailed results are

reported in the literature (see [1], [2]). Fig. 1 shows the corre-

sponding geometry and the notation used here. A cylindrical co-

ordinate system is used. We consider the equivalent 2-dimensional
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Fig. 1. Edge ofaperfectly conducting medlumwith cylindrlcalgeomet~

problem assuming homogeneity indirection. Then the Eand H

field components attheedgep ~ Obehave as follows:

f

_p(?r/41)– 1) for@O > ~ (unbounded)
EQ, E4, HP, H@

<co otherwise (bounded)

E,, HZ < co (bounded). (1)

Note that in any casea bounded term in the fields may exist and

thus (1) provides an explicit p dependence at the edge only fora

singular behavior (i.e., for~o > m). This explaius also the finding

ofa “constantterrn” in [3].

No general treatment, however, is available for edges of con-

ductive media with K < CO.Such results are of particular impor-

tance when studying planar geometries with rectangular nonideal

conductors as done, for instance, in MMIC transmission-line anal-

ysis. Recently, several approaches were reported in the literature

on that subject taking into account the metallic strips as media of

finite conductivity (e.g., [4]-[8]).

In reality, of course, all fields need to be bounded on physical

reasons. But then, beside the finite conductivity, also no ideally

sharp edges exist. One, therefore, cannot conclude from that sim-

ple consideration whether the “intermediate” case of an ideally

sharp edge of finite conductivity produces singularities or not. A

more detailed treatment is necessary which ispresented in this pa-

per.

11. METHOD OF ANALYSIS

Ouranalysis is based on Meixner’spaper [l]. His mathematical

considerations are extended here in order to cover also the case of

finite conductivity values. Theconfiguration undet -investigationis

shown in Fig. 2. Astructure homogeneous along cis assumed con-

sisting of two neighbored isotropic media of zero and finite con-

ductivity, respectively.

According to the cylindrical geometry the singular field behavior

forp - Ocanbedescribed bythatof the Bessel function divided

by p. As can be seen from the Bessel-function :series expansion,

one has a field singularity of the form

JUdenotes the Bessel function oforderv, rthe Gamma function,

and Kthe separation constant. Note that inthelossy case vassumes

complex values.

Extracting the factor p’ -1 the remainder is bounded and can be

expanded in a Taylor series with respect to p. Thus each field com-

ponent can be expressed in the following form:

P “-i. {ao+a[. p+a, up’+...}, al= f(q$, z) (3)

(o
Fig. 2. The problem under investigation: edge of a conducting medium

with O < K2 < w (otherwise identical to Fig. 1).

with the Taylor coefficients a, being functions of both @ and z as

indicated. Generally, all six field components are represented by a

series according to (3) but with different sets of coe~cients a,. Ap-

plying Maxwellian equations and fulfilling the continuity condi-

tions at @J= O and ~ = @oand @ = do – 27r, respectively, one

derives a system of differential equations in @ for th$ a, (see [l]).

Nontrivial solutions can be obtained only for special values of v.

Since our aim is tc~determine solely the order of singularity, only

those values v, are required for the further considerations.

Substituting v, back into the field components one finds the order

of singularity for p + O: Eo, E@, Ho, H@ - p“’ -1. The longitudinal

fields E, and H,, on the other hand, remain bounded and their value

cannot be determined solely by the edge geometry.

The range of Real(v) is restricted to the interval ]0, 1] on general

reasons: Real(v) > 0 must hold because otherwise the energy stored

in the neighborhood of the edge would become infinite (’‘edge con-

dition’ ‘). On the other hand, if Real(v) > 1, the fields remain

bounded, the leading term p “- [ in (3) becomes zero at p = O, and

hence the approach of (3) fails.

After some mathematical operations the differential system of

equations separates into two decoupled algebr?ic problems for Eo,

E@, and H@, H+, respectively. For the geometty of Fig. 2 and the

~-field case, one has the following complex-valued equation for v:

El — ~2 sin (VE7r)
-—=+ (4)
e, + @ sin (VE[7r – r#O])

with e, = e, ,Eo ancl q = C,zco – jK2/ti (see Fig. 2). Note that E.

and E@behave -p” -1.

Correspondingly, one derives for Ho and H+:

gl – t42 sin (VH7r)
—=+ (5)

p, + p* sin (v* [~ – ~$)])

with Ho, He - p“”-’. Note that the negative sign appears in front

of the right-hand side of(4), (5) when interchanging the numbering

of the Iossy and the Iossless region compared to Fig. 2.

In the case c, = cz. all the electric fields remain bounded and
there is no explicil dependence on the edge geometry. The same

statement holds for the magnetic fields if PI = P1.

Chow et al. [9] found numerically that for a rectangular strip

conductor the fields for K= CQand K < m, respectively, differ at

the edge itself but are of comparable magnitude at some distance

apart. It would be interesting, therefore, to determine that critical

distance range in which significant dewations occur. Such an anal-

ysis, however, cannot be formulated in a general way as presented

above, because the field behavior at p > 0 depends not only on the

edge geometry itself but also on the surrounding structure. There-

fore, statements can be deduced only for the specific line geometry

under investigation.
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III. DISCUSSION

A. Electric Field

Equations (4) and (5) show that the tangential E field compo-

nents become singular only if e, # q. Particularly, in the case of

a metallic conductor with K2>> LOCO(4) reads

sin (UE7r)——
sin (VE[7r – O.])”

(6)

In the microwave range and for realistic metallic conductivity
values the term @EO/K~is very small (lower than 10–6). Therefore.

the E-field singularity should approximate the value VE = r/@. for
~ = ~ (see ( 1)), Our numerical investigations confirmed this ob-

servation. For that purpose, we employed a perturbation approach

which gives the deviation of VEfrom the K= @value v&c = ~/fPo.

For the structures of interest the difference IVE – vE~ I ranges in

the order below 10-12 and thus one may use the value vE~ with

excellent accuracy.

That statement, of course, does not hold if one considers an in-

finitely thin layer (O. = 27r). Then one finds VE – 1 = – 1/2 for
~ = m (field singularity - P- f IZ), whereas VE – 1 = O (bounded

fields) is obtained for K< w. In the latter case, namely, region (2)

in Fig. 2 has zero thickness and thus does not disturb the fields at

all.

B. Magnetic Field

For p, = AZ, in contrast to the electric field, the H components

remain bounded independent of the conductivity value as far as

KZ< coholds. As a consequence, the limit K2+ m differs from

the K2= covalue. A noncontinuous transition takes place. Only if

media with different permeabilities are involved HP and Ilo become

singular - p“~ – [ at the edge according to (5).

One further consideration supports the result for p, = V2 and

KZ< co:As well known, in the dc limit ~ ~ O the current density

inside a nonideal conductor becomes uniformly distributed and,

consequently, the H field has to remain bounded (see [10]).

C. Three-Region Problem

In the presence of two dielectric and one conductive regions as

depicted by Fig. 3, a similar mathematical procedure as described

in Section II may be applied (see [2]). After some lengthy opera-

tions, again two decoupled conditions for VE and VH can be de-

duced.

Regarding the singularities, the results correspond to those of the

two-region problem treated before, except for one special aspect:

Bath in the Iossy and the Iossless case for certain parameter con-

stellations (i. e.: @l small and r#2 slightly larger than T, depending

also on 6,1/c,l), all fields remain bounded. Regarding the analysis

of planar transmission lines, however, that observation has no

practical relevance.

IV. CONCLUSIONS

We will confine our ~onsiderations to the planar transmission-

Iine geometries found in microwave circuits and MMIC’S. Owing

to the rectangular conductor cross-sections, for this class of prob-

lems primarily the 90-degree angle is of importance. Fig. 4 illus-

trates such a geometry. It describes, for example, the case of a

conductor edge located at the top of a dielectric substrate.

For that configuration, the tangential E field components are sin-

Fig. 3. The three-region problem: edge of a conducting medium with
O < Kj < @ neighbored by two dielectric regions.

0,= @=o

Fig. 4. Typical geometry found in microwave transmission-line analysis:
rectangular conductor at the top of a dielectric substrate (V, = K“, the no-
tation refers to Fig. 3).

gular at the edge with approximately the same order as in the cor-

responding geometry with K3= m. The tangential H field compo-

nents, on the other hand, become bounded and thus the transition

between K3+ coand K3 = w is not continuous. That means, for

instance: It is not justified to assume the tangential magnetic fields

at the edge to be approximately equal in both cases. Thus one con-

cludes that any perturbational approach based on that approxima-

tion fails if the influence of the fields at the edge is predominant.

More precisely, the results can be summarized as follows (the

notation refers to Fig. 4):

f(3 =03 Kj<w

E,, E@ UL—l+w
-P _p”i-l + @

H,, H4 -P
i7T/+111 I ~ ~ bounded (7)

E,, Hz bounded bounded

with vi = VEand

[-

T
for e,., = E,2

‘E = do
(8)

~?-1— E,? sin (vE7r)—— otherwise
.Er, + 6,2 sin (VE[7r – do])

Assuming e,, /e,2 >2, for instance, one finds 0.5 < VE <0.6,

which is similar to the case of an infinitely thin strip in an homo-

geneous medium (VE = 0.5).
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Experimental Wide-Stopband Filters Utilizing
Asymmetric Ferrite Junctions

H. How, Y. Liu, S. Zhang, C. Vittoria, C. Carosella,

and V. Folen

Abstract—Filters incorporating asymmetric striphine Y-junction cir-

culators have been fabricated and tested over the frequency range of
0.05 to 18 GHz. The passband frequency was near 2 GHz. The inser-
tion loss was -2 dB and the stopband extended from 4.5 to 18 GHz

with transmission < – 30 dB. The filter includes ferrite discs in which

high order modes have been eliminated as calculated in an earlier pa-

per [2].

INTRODUCTION

Filter designs incorporating ferrite materials have been devel-

oped for the past 25 years. Typically a polished sphere of single

crystal YIG is fed through two orthogonal semi-circular wire loops
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such that the two wires become tightly coupled at the ferromagnetic

resonant frequency of the YIG sphere [1]. However, this design is

susceptible to magnetostatic mode excitations above and below the

main ferromagnetic resonance mode. In addition, instabilities of the

spin waves can induce the excitation of other subsidiary resonance

modes. Altogether, excitations ‘of these extraneous modes give rise

to spurious transmissions at frequencies off the fundamental pass-

band frequency. The power handling capacity in a resonant device

is therefore quite low ( -100 mW). In a previous paper [2] we

investigated the feasibility of constructing a ferrite filter utilizing a

Y-junction circulator design. By careful design of the junction ge-

ometry high order modes of excitations can be effectively sup-

pressed and, hence, the stopband transmission of the device can be

extended many times the fundamental frequency. Since wide stop-

band filters are currently needed for radome applications, we find

here an example of ferrite devices that can be utilized to protect

electronic components in high-power an~/or high-noise environ-

ments. For a typical stripline circulator operating below 30 GHz

the CW power handling capability can be as high as several hundred

watts [3], since non-resonant properties of the ferrite are utilized

in the microwave transmission mechanism.

A circulator is clefined as a three-port device arranged such that

the energy entering a port is coupled to an adjacent port but not to

the third port. A circulator requires its three ports to be arranged

symmetrically with respect to one another. However, one may re-

lax this 3-fold symmetry to obtain one more degree of freedom in

designing a circulator filter. Strictly speaking, this asymmetric de-

sign cannot be referred to as a circulator design and, thdrefore; we

call our device a circulator design only under a restricted basis. In

[2] we have established the circulation conditions for an asymmet-

ric circulator, which determined in turn the radius of the ferrite disc

and the dielectric ratio of the ferrite and the dielectric filling ma-

terial [2].

In this paper we report our experimental work following the de-

sign conditions predicted by the theory [2]. We have fabricated

several asymmetric circulators using three different kinds of ferrite

materials. Experimentally, we find that transmissions due to high

order mode excitations have been effectively stt~pressed and the

reflection and transmission characteristics compare reasonably well

with our calculations [2]. Using two circulators in cascade we mea-

sure 2.1 dB insertion loss, 33 dB isolation, and the stopband ex-

tending more than two octaves of the transmission frequency,

f3XPERIMENTS

Fig. 1 depicts the geometty of an asymmc%ric circulator where

the three ports are designated as the input, output, and isolated

ports. The angle O denotes half the asymmetric port separation an-

gle (not necessarily y equal to 60°), and ~ is half the suspension

angle of the three ports. As predicted in [2] a circulator filter design

can be realized by assigning the two angles 0 and ~ both equal to

450. Furthermore, the theory also predicts the following values:

tiO/U~ = ‘2.1, cof/u~ = 2.0, yAH/u~ = 0.012>

p = 6.12, K = 4.88, ~.ff = 2.23,

~d/~f = CI.092, X = 0.157, Z = 4.92,

where p and Kare the Polder tensor elemenk defined by
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